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Abstract

Random variables X and Y are mutually completely dependent if

there exists a one-to-one function g for which P[Y = g(X)] = 1. An
example is presented of a pair of random variables which are
mutually completely dependent, but "almost" independent. This
example motivates considering a new concept of dependence, called

monotone dependence, in which g above is now required to be

monotone. Finally, this monotone dependence concept leads to
defining and studying the properties of a new numer ical measure of
statistical association between random variables X and Y defined by
sup {corr [f(X), g(Y)]}, where the sup is taken over all pairs of

suitable monotone functions £ and g.
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1. Introduction arxl summary. A random variable (rv) Y is defined

(see Lancaster (1963)) to be completely dependent on a rv X if there

exists a function g such that

(1.1) PlY t g(X)] = 1.

Intuitively, Y is completely dependent on X if Y is perfectly
predictable from X. The rv's X and Y are defined (see Lancaster (1963))

to be mutually completely dependent (MCD) if Y is completely dependent

on X and X is completely dependent on Y. Equivalently, X and Y are MCD
if (1.1) holds for some one-to-one function g. The concept of mutual
complete dependence is, in a real sense, directly opposite to that of
stochastic independence, in that mutual complete dependence_b entails
complete predictability of either rv from the other, while stochastic
independence entails complete unprec'lictability.

An important measure of dependence between two nondegené‘fate rv's X
and Y is that of sup correlation, introduced by Gebelein (1941), studied
among others by Renyi (1959) and Sarmanov (1958a,b), and defined by

p'(X,Y) = sup p[£(X),g(Y)],
where the supremum is taken over all Borel-measurable functions £, g,
such that 0 <Var f(X) < oo and 0 < Var g(Y) < oo, a‘nd where p
represents the ordinary (Pearson product moment) correlation. The
properties of sup correlation as a measure of dependence are discussed
in Renyi (1959). It is clear that two rv's which are MCD have sup
correlation 1, but that the converse is not true. (See Lancaster (1963)
for a discussion of necessary and sufficient conditions for the complete

mutual dependence of random var iables.)

e
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Clearly, if a sequence {(Xn, Yn)} of pairs of independent rv's
converges in law to a pair (X, Y) of rv's, then X and Y must be
independent. It might be conjectured that if a sequence {(Xn, Yn)} of
pairs of MCD rv's converges in law to a pair (X, Y) of rv's, then X and
Y must be MCD. As is shown below, this conjecture is false. In fact,
Section 2 presents a sequence of pairs of MCD rv's, all having the same
marginals, which converges to a pair of independent rv's. This defect
of mutual complete dependence motivates a new concept of total
statistical dependence, called monotone dependence, which is defined and
studied in Section 3.

When two rv's are neither totally statistical dependent nor totally
independent, it is often useful to have a numerical measure, such as the
correlation coefficient, to express the extent to which the rv's are
related. A new numerical measure, called monotone correlation, is
presented and examined in Section 4. This new measure is related in
Section 5 to the concept of uniform representations of bivariate

distributions.

2. MCD rv's which are almost independent. This section presents

sequences {Un} and {Vn} of rv's all having a uniform distribution on
(0,1) such that for each n, Un and vn are MCD, but that the pairs (Un,
Vn) converge in law to a pair (U,V) of independent rv's each having a
uniform distribution on (0,1).

Partition the unit square into n2

congruent squares and denote by
(i,j) the square whose upper right corner is the point with coordinates

x=i/n, y=3j/n. Similarly, partition each of these n2 squares into n2




R

Page 3

subsquares and let (i,j,p,g) denote subsquare (p,q) of sguare (i,j).
Now let the bivariate rv (Un, Vn) distribute mass n_2 uniformly on
either one of the diagonals of each of the n2 subsquares of the form
(i,j,j,i) for 1 i <n, 1 <j< n. Figure 1 illustrates the case

n = 3. (INSERT FIGURE 1 HERE).

N

Figure 1. Support of the Distribution of (U3,V3) .

THEOREM 1. Each of the rv's U , V, has a uniform distribution on

(0,1). For each n the rv's U, and V are MCD. The sequence {(U,, V.)}

converges in law to a pair (U,V) of independent uniform rv's.

PROOF. For each n, it is clear that Un and Vn are MCD. Also,
since U and V_  each assigns mass n ! uniformly to each interval
((i~1)/n, i/n), it is clear that Un and Vn have uniform distributions on

2 to each of the n2

(0,1). PFinally, since (U V) assigns total mass n
large squares, limn 1='[Un S, vn $ vl = uv for each point (u,v) in the

unit square. (]
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Now, let F and G be any pair of continuous cumulative distribution

functions (cdf's). It is easy to generate sequences {Xn} and {Yn} of
rv's with respective marginals F and G such that Xn and Yn are MCD for
each n, yet {(Xn, Yn)} has joint limiting distribution F-G and hence are
asymptotically independent. To do this, define X = F U) and
Yn = G-1 (Vn) where Un and Vn are as above and where for any continuous
cdf K, we define
(2.1) K2 (t) = inf {x: K(x) 2 t}.
This method of generating bivariate cdf's having specified continuous
marginals from bivariate cdf's having uniform marginals is the method of
translation. (See for example Mardia (1970), Kimeldorf and Sampson
(1975a) .)

3. Monotone dependence. ' The preceding example of pairs of MCD

rv's which are almost independent suggests that mutual complete
dependence is too broad a concept to be an antithesis of independence.

We therefore propose the following concepts of total dependence.

DEFINITION. Let X and Y be continuous rv's. Then Y is monotone

dependent on X if there exists a monotone - function g for yzh‘:ch
PlY = g(X)] = 1.

It is easy either to verify directly or to conclude as a corollary
to Theorem 2 below that Y is monotone dependent on X if and only if X is
monotone dependent on Y. We can therefore make the following
definitions.

DEFINITIONS. Two continuous rv's X and Y are monotone dependent if

there exists a monotone function g for which P[Y = g(X)] = 1. If g is

B i mammn TP ————
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increasing, X and Y are said to be increasing dependent; if g is

decreasing, X and Y are said to be decreasing dependent.

Before préceeding to show that monotone dependeht rv's cannot be
"almost" independent in the sense described in Section 2, we review some
known results on Frgchet bounds. (See Frechet (1951).) Let F and G be
cdf's. Then

H+(x,y) = min [F(x), G(y)]

H (x,y) = max [F(x) + G(y) - 1, 0]
are called the upper and lower Frechet bounds, respectively, of the
class of bivariate cdf's .wiﬁh marginals F and G. Both H' and H  are
singular bivariate distributions; at assigns probability 1 to the set
{(x,¥):- F(x) =G(y)} and H to the set {(x,y): F(x) ;-G(y) = 1}. They
are bounds in the sense that if H is any bivariate cdf with marginals F
and G; then il =
(3.1) H (x,y) < H(X,y) < H (x,y).
(A proof of (3.1) appears in :'Iohnson and Kotz (1972, pp. 22-23).)

THEOREM 2. Let X and Y be continuous rv's with respective cdf's F

and G. A necessary and sufficient condition that X and Y be increasing

(decreasing) monotone dependent is that the joint cdf of (X,Y) is

gt @),

PROOF. The sufficiency is immediate. To prove the necessity,
assume that X and Y are increasing monotone dependent, so that (1.1)
holds for some monotone increasing g. If s £ t, then

(3.2) F(t) - F(s) < Plg(s) < g(X) < g(t)] + Plg(X) = g(s)]
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Plg(s) <Y S g(t)] + P[Y = g(s)]

U}

]

Plg(s) <Y < g(t)]

A

G(g(t)) - G(g(s)).

let £t > o and s 2 - in (3.2) to derive 1 < G(g(ow)) ~ G(g(-o)) and
hence G(g(o)) =1 and G(g(-m)) = 0. Let s » —oo and set t=x in (3.2)
to derive

(3.3) | F(x) < G(g(x)).

Let s=x and t > oo in (3.3) to derive the inequality

(3.4) 1-F(x) <1-G(gx)),

which, together with (3.3), implies that F(x) = G(g(x)). Now, if H is
the joint cdf of (X,Y), then

H(x,y) =PX <x, YK Y]

P[F(X) < F(x), G(Y) £ G(¥)]

P[G(g(X)) < F(x), G(Y) £ G(Y))

P[G(Y) < F(x), G(Y) < G(y)]

it

P(G(Y) < min {F(x), G(v)}]

min {F(x), G(y)}.
A similar argument is used if g is decreasing. (]

Theorem 2 is a partial Jjustification for the interpretation of
monotone dependence as an opposite to stochastic independence. The
theorem implies that among all pairs of rv's with prescribed marginals,
those which are as dependent as possible in the sense of (3.1) are
exactly those which are monotone dependent. Section 2 presented a
sequence of pairs of MCD continwous rv's which converges in law to a

pair of independent rv's. The following theorem shows that this cannot
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happen for pairs of monotone dependent continuous rv's by showing that

the property of monotone dependence is preserved under weak convergence.

THEOREM 3. If {(X , Y )} 1is a sequence of pairs of monotone

dependent continuous rv's which converge in law to a pair (X,Y) of
in law to a pair 20s

continuous rv's, then X and Y are monotone dependent.

PROOF'. Denote by H and H the respective bivariate cdf's of

(Xn,Yn) and (X,Y), and denote by Fn, Gn’ F, and G the cdf's of Xn' Yn,

X, and Y, respectively. Since {(Xn,Yn)} converges in law to (X,Y), it
follows that {Fn(x)} converges to F(x), {Gn(y)} converges to G(y) and
there exists a subsequence { (X_ ,Y )} such that either X and Y are
% % " "
increasing monotone dependent for all k or decreasing monotone dependent
for all k. It follows in the former case by Theorem 2 that Hn (x,y) =
k
min {Fn (x), Gn (y)}, which converges to H(x,y) = min {F(x), G(y)}.
k k
Therefore, X and Y are increasing monotone dependent. A similar

argument holds if xn and Yn are decreasing monotone dependent for each
k k G

k. 0O

4. Monotone correlation. Two continuous rv's X and Y are monotone

dependent if there exists a perfect monotone relation between them. If
the rv's are not perfectly monotonically related, it may be useful to
measure numer ically the degree of monotone dependence between them. One
such measure, called monotone correlation, can be defined as follows:

DEFINITION. The monotone correlation p* between two nondegenerate

rv's X and Y is
(4.1) P*(X,Y) = sup p(£(X), g(Y)],

where the supremum is taken over all monotone functions f, g, for which
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0 <var f(X) < o0 and 0 < var g(Y) < oo.

It is clear that if two rv's are monotone dependent, then their
monotone correlation is 1. To see that the converse implication fails,
let (X,Y) have a uniform distribution over the region [(0,1) X (0,1)] U
[(1,2) X (1,2)] so that X and Y are not monotone dependent, although
o*(X,Y) > p[I(O'l)(X), I(O,l)(Y)] =1, where I denotes the indicator
function. It is obvious that

p(X,Y) £ p*(X,Y) {0'(X,Y).

It can be easily seen that po* is not identical to po'. For example,
let (X,Y) have a uniform distribution on the region [(0,1) X (0,1)] U
(o, X (2,31 v [(1,2) X (1,2)] U [(2,3) X (0,1)] U [((2,3) X (2,3)]
so that p*(X,Y) <1, but p'(X,Y) 2

and let f = + I

Lo, 1
1.

(2,3)'

olE(X),£(Y)]

While correlation as a measure of dependence is invariant under
changes of scale and location in X and Y, monotone correlation is
invariant under all order-preserving or order~reversing transformations
of X and Y. Thus, monotone correlation would be a suitable measure of
association for ordinal data. For a further discussion of measures of
association for ordinal data, the reader is referred to Kruskal (1958)
and Gibbons (1971, Chap. 12).

Any candidate for a measure of association should have the property
of being zero when the rv's are independent. Clearly, correlation, sup
correlation, and monotone correlation all have this property. It would
also be desirable for a measure of association to satisfy the converse

impl ication, namely that it be zero only when X and Y are independent.
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Correlation clearly does not satisfy this converse property, although
sup correlation does. (See Renyi (1959)). The following theorem shows
that monotone correlation satisfies this converse implication. The
proof of the theorem is essentially similar to that given by Renyi for
sup correlation.

THEOREM 4. If X and Y are nondegenerate rv's with monotone

correlation zero, then X and Y are independent.

PROOF. Suppose p*(X,Y) = 0. For any real t, define ft = I(-oo,t) .
We claim that p[fs(X),ft(Y)] = 0. For if not, then either
p[fs(X) ,gt(Y)] > 0 or p[fs(X),—gt(Y)] > 0, which contradicts the
hypothesis. Now, p[fS(X),ft(Y)] = (0 implies that P[X s, Y t] =

P[X £ s]-P[Y £ t], which implies independence. []

5. Uniform representation and monotone correlation. Let H be a

continuous bivariate cdf with marginal cdf's F and G. The uniform

representation UH of H as defined by Kimeldorf and Sampson (1975b) is

(5.1) Uy =HE W, W), 0gugl, 0§vgl,

where FL

and G! are as defined by (2.1). Observe that U, is a cdf on
the unit square \:ith both marginal distributions being uniform on (0,1).
Thus, the class of all continuous bivariate cdf's can be decomposed into
equivalence classes determined by the equivalence relation

(5.2) Hy i~ Hs Lff U, =T
1 Z Hy H,

If (X,¥Y) and (V,W) have continuwous cdfs H and K, respectively, we write

(X,Y) ~ (V,W) whenever H ~ K.
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LEMMA 1. Let (X,Y) and (V,W) have continuous bivariate cdf's H and

K, respectively. Then H ~ K (i.e. (X,Y) ~ (V,W)) if and only if there

exist increasing functions A and B such that the joint cdf of A(X) and

B(Y) is K.

PROOF. Denote the marginals of H by Fx and FY and the marginals of
K by Fv and Fw. Suppose there exist increasing functions A and B such
that (A(X),B(Y)) has continuous cdf K. Since A(X) is a continuous rv,
the marginal cdf of A(X) is F(s) = P[A(X) <s] =P[X <A (s)] =
(FXOA“I) (s), where A} is as defined by (2.1). Similarly, the marginal
cdf of B(Y) is (FYOB-I) (t). Therefore, the uniform representation of K
is

=] =1

Ug(s,8) = K[ lor, H(s), 871 Tor, (1))

PAX) < @) or,s), BOY) < BT oR (1))

PIX S Fy 1 (8), Y S BN (D)]

~
-1 -1
— H(Fx (s), FY (t)),
which is the uniform representation of H.
Conversely, suppose H ~ K. Let A = Fv_loFx and B = FW_IOFY. Then
A(X) has cdf Fv and B(Y) has cdf Fw. Moreover, by (5.1) the uniform

representation of the joint cdf of (A(X), B(Y)) is

U(s,t) = PIAX) < Byl (s), BY) < . (0)]

PIFy(X) <5, Fy(Y) < t]

=1 -

PIX S Py (8), Y S BN (0],

which is the uniform representation of H, hence of K. Finally, since
the joint cdf of (A(X), B(Y)) has the same marginals as K and also the

same uniform representation as K, the joint cdf is K. []
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An elementary relationship between the concepts of uniform
representation and monotone correlaion is that
(X,Y) ~ (V,W) implies p*(X,Y) = o*(V,W).
This relationship follows directly from Lemma 1. A further relationship
between the concepts of uniform representation and monotone correlation
is expressed by the following theorem, whose proof requires an

additional lemma.

THEOREM 5. Let (X,Y) have continuous bivariate cdf H. Then

(5.3) - o*(X,Y) = sup {lo(V,W)|: (V,W) ~ (X,Y)}.

LEMMA 2. Given nondegenerate rv's X and Y, let f and g be

increasing functions for which 0 < var £(X) < oo and 0 < var g(¥) < oo.

Then there exist sequences ({f } and {g,} of strictly increasing

functions for which var f (X) < oo, var g (Y) < o, and lim o(f (X},

9,(¥)] = pl£(X), g(¥)].

PROOF. We use the fact that any increasing function can be
uniformly approximated by a strictly increasing function. Let {fn} and
{gn} be sequences of strictly increasing functions converging uniformly
to f and g, respectively. Since f(X) and g(Y) have finite nonzero
var iances, we have E[f_(X)] > E[£(X)], Elg, (V)] > Elg(Y)], E[fnz(x)] >
E(E2(0)1, Elg () > Elg° V)], and EI£,(X)g ()] > E[E(X)G(Y)], so that

PLE (X), g (D] >plEX), g(]. O

PROOF OF THEOREM. Let any number € > 0 be given. By the
definition of p* and Lemma 2, there exist strictly increasing functions

f and g such that |o*(X,Y) - lo(f(X), g(¥Y)]! | < €. Thus, the pair
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(V=£(X), W=g(Y)) has a continuous joint cdf and Lemma 1 can be applied
to conclude that (V,W) ~ (X,Y). Hence the left side of (5.3) cannot
exceed the right side. To prove the reverse inequality, suppose (V,W) ~
(X,Y). Then by Lemma 1, there exist increasing functions A and B for
which p[A(X), B(Y)] = o(V,W). Let A' = [sgn o(V,W)]-A so that [o(V,W) |

=p[A'(X), B(Y)] <o*X,Y). 0

If X and Y are univariate rv's with respective cdf's F and G, then

the grade correlation (see, for example Gibbons (1971)), which is the

population analog of Spearman's rank correlation coefficient, is defined
as pg = p[F(X), G(Y)]. Thus, the grade correlation is the (ordinary)
correlation coefficient of the uniform representation, and
pg(X,Y) S P*(X,Y) < p'(X,Y).

Note that the probability integral transform can be used to standardize
an ordinal scale by divising ranges that are equal in terms of
probability. In computing relationships between two such ordinal
variables, therefore, the rank correlation (or grade correlation) is a
useful device. However, it might be argued that the scaling should be
done in an absolute fashion, rather than relative to some sort of
population distribution. What the monotone correlation measures is the
maximal correlation that might be achieved under any such monotone
scaling.

L continwous bivariate distribution can be decomposed into two
components: its structure, by which is meant the equivalence class

determined by the equivalence relation ~ (defined by (5.2)) in which the

distribution belongs, and its marginal distributions. Conversely, given
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any equivalence class and any pair of continuous univariate
distributions, there exists a unique bivariate distribution with these
two components. In this context, Whitt (1976) posed the following
problem: If the marginals are fixed, for what structure is the
correlation maximized? Whitt showed that the maximum correlation is
achieved when the bivariate distribution is the upper Frechet bound, and
the correlation is minimized when the distribution is the lower Frechet
bound.

One can just as well pose the reverse problem: If the structure is
fixed, for what pair of marginals is the correlation maximized? In
general, there will not be any pair of marginals for which the maximum
is achieved; on the other hand, Theorem 5 states that the supremum of

the correlations is exactly the monotone correlation.
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